Asymptotic Distribution of the OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model

نویسندگان

  • Kairat Mynbaev
  • Kairat T. Mynbaev
چکیده

We find the asymptotics of the OLS estimator of the parameters β and ρ in the spatial autoregressive model with exogenous regressors Yn = Xnβ+ρWnYn+Vn. Only low-level conditions are imposed. Exogenous regressors may be bounded or growing, like polynomial trends. The assumption on the spatial matrix Wn is appropriate for the situation when each economic agent is influenced by many others. The asymptotics contains both linear and quadratic forms in standard normal variables. The conditions and the format of the result are chosen in a way compatible with known results for the model without lags by Anderson (1971) and for the spatial model without exogenous regressors due to Mynbaev and Ullah (2006).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RePEc Archive OLS Estimator for a Mixed Regressive , Spatial Autoregressive Model : Extended

We find the asymptotic distribution of the OLS estimator of the parameters β and ρ in the mixed spatial model with exogenous regressors Yn = Xnβ + ρWnYn + Vn. The exogenous regressors may be bounded or growing, like polynomial trends. The assumption about the spatial matrix Wn is appropriate for the situation when each economic agent is influenced by many others. The error term is a short-memor...

متن کامل

Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model

‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...

متن کامل

Asymptotic Distributions of Quasi-Maximum Likelihood Estimators

Asymptotic properties of MLEs and QMLEs of mixed regressive, spatial autoregressive models are investigated. The stochastic rates of convergence of the MLE and QMLE for such models may be less than the √ n-rate under some circumstances even though its limiting distribution is asymptotically normal. When spatially varying regressors are relevant, the MLE and QMLE of the mixed regressive, autoreg...

متن کامل

Asymptotic Properties of the Efficient Estimators for Cointegrating Regression Models with Serially Dependent Errors

In this paper, we analytically investigate three efficient estimators for cointegrating regression models: Phillips and Hansen’s (1990) fully modified OLS estimator, Park’s (1992) canonical cointegrating regression estimator, and Saikkonen’s (1991) dynamic OLS estimator. First, by the Monte Carlo simulations, we demonstrate that these efficient methods do not work well when the regression error...

متن کامل

ASYMPTOTIC DISTRIBUTIONS OF QUASI-MAXIMUM LIKELIHOOD ESTIMATORS FOR SPATIAL AUTOREGRESSIVE MODELS BY LUNG-FEI LEE This paper investigates asymptotic properties of the maximim likelihood estimator and the quasi-maximum likelihood estimator for the spatial autore-

This paper investigates asymptotic properties of the maximim likelihood estimator and the quasi-maximum likelihood estimator for the spatial autoregressive model. The rates of convergence of those estimators may depend on some general features of the spatial weights matrix of the model. It is important to make the distinction with different spatial scenarios. Under the scenario that each unit w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006